PanProbes™ Universal qPCR Master Mix 28 JUL 2025 | Catalog Number | Size | Concentration | |----------------|---------------------------|---------------| | QPD01-0100 | 100 reactions (20 μl vol) | 2X | #### **Storage Conditions** Stable for up to 3 months at 4°C. Stable for up to 24 months at -20°C. #### Description PanProbes™ Universal qPCR Master Mix is a 2x concentrated, ready-to-use master mix optimized for probe-based real-time PCR and compatible with the majority of commercially available real-time PCR systems (ROX-independent and ROX-dependent). It contains antibody-mediated hot-start Taq DNA polymerase, dNTPs, MgCl₂, enhancers, stabilizers and essentials for a success PCR reaction. ### Kit Content(s) | 2X Universal qPCR Master Mix | 1 ml x 1 vial | |------------------------------|----------------| | High ROX Reference Dye | 40 μl x 1 vial | | Low ROX Reference Dye | 40 μl x 1 vial | #### Required materials but not provided - A compatible real-time PCR instrument - Vortex or equivalent - Microcentrifuge - Plates and seals for your instruments ### **Instrument Compatibility** This Master Mix is compatible with the majority of commercially available real-time PCR systems. | Instrument | ROX | | |--|------------------------|--| | ABI Prism7000/7300/7700/7900HT, ABI Step One, | High ROX reference dye | | | ABI Step One Plus | | | | ABI Prism 7500/7500 Fast, MJ Research Chromo4, | | | | Option (II), Corbett Rotor Gene 3000 | Low ROX reference dye | | #### **Reaction Setup** - 1. Thaw PanProbes™ Universal qPCR Master Mix and the rest of frozen reaction components to a temperature of 4°C. In order to entirely collect solutions, combine thoroughly and centrifuge briefly, then store at 4°C and avoid from light. - 2. Prepare (on ice or at room temperature) enough assay Master Mix for all reactions by adding all necessary components, except the DNA template, according to the recommendations in Table 1 (below) 201 | Table 1. Reaction Setup | | | | |--|------------------------------|------------------------------|---| | Components | Volume per
20 µl Reaction | Volume per
10 µl Reaction | Final Concentration | | PanProbes™ Universal qPCR
Master Mix (2x) | 10 μΙ | 5 μΙ | 1x | | Forward and reverse primers | Variable | Variable | 300–500 nM each primer | | Fluorogenic probe(s) | Variable | Variable | 150–250 nM each | | DNA template (add at step 4) | Variable | Variable | cDNA: 1pg–10ng
Genomic DNA: 50ng-250ng | | High ROX Reference Dye | 0.4 μΙ | 0.2 μΙ | 500 nM or not required | | Low ROX Reference Dye | 0.4 μΙ | 0.2 μΙ | 50 nM or not required | | Nuclease-free H ₂ O | Variable | Variable | - 8745 | | Total reaction mix volume | 20 μΙ | 10 μΙ | <u> </u> | ^{*} Optimization may be needed for better performance. - 3. Combine the assay Master Mix thoroughly to ensure consistency and equally dispense the solution into each qPCR tube or into the wells of a qPCR plate. Employ good pipetting practice to ensure assay precision and accuracy. - 4. Add DNA samples (and DNase-free H_2O if needed) to the PCR tubes or wells containing assay Master Mix (Table 1), seal the tubes or wells with flat caps or optically transparent film. **Note**: to ensure thorough mixing of reaction components, vortex for approximately 30 seconds (or more). - 5. Spin the tubes or plate to remove any air bubbles and collect the reaction mixture in the vessel bottom. - 6. Setup the thermal cycling protocol on a real-time PCR instrument according to Table 2. **Note:** optimization may be needed for better performance. - 7. Load the PCR tubes or plate into the real-time PCR instrument and commence the run. - 8. Perform data analysis according to the instrument-specific instructions. - Process in the thermal cycler for 35~45 cycles as follows: | Table 2. Thermal Cycling Protocol | | | |-----------------------------------|---|--| | Initial Denaturation | nitial Denaturation 3-5 minutes at 95°C (5 mins for GC rich or complex templates) | | | Denaturation 15 seconds at 95°C | | | | Annealing & Extension | 60 seconds at 60°C and Plate Read | | Note: Optimal conditions for amplification will vary depending on the primers and thermal cycler used. It may be necessary to optimize the system for individual primers, template, and thermal cycler. #### **Template** Purified high quality DNA is needed for a success PCR reaction. The final concentration of DNA templease refer to table 1. ## **Important notes** - 1. Shake gently before use to avoid foaming and low-speed centrifugation. - 2. During operation, always wear a lab coat, disposable gloves, and protective equipment. ## **Troubleshooting** Refer to the table 3 below to troubleshoot problems that you may encounter when quantifying of nucleic acid targets with the kit. | Table 3. Troubleshooting | | | | |---------------------------------------|---|---|--| | Trouble | Cause | Solution | | | | Inhibitor Present | Perform a dilution series of the PCR template to determine whether
the effect of the inhibitory agent can be reduced. Take extra care with the nucleic acid extraction steps to minimize
carryover of PCR inhibitors. | | | Poor Signal or No
Signal | Degraded
Template
Material | Do not store diluted template in water or at low concentrations. Check the integrity of template material by automated or manual gel electrophoresis. | | | | Inadequate Thermal Cycling Conditions | Try using a minimum extension time of 30 sec for genomic DNA and
15 sec for cDNA. | | | Signal in
Negative Control | Contamination of Reaction Components with Target Sequence | To minimize the possibility of contamination of PCR components by PCR product or other template, designate a work area exclusively for PCR assay setup. Use a solution of 10% bleach instead of ethanol to prepare the workstation area for PCR assay setup. Ethanol will only induce precipitation of DNA in your work area, while the 10% bleach solution will hydrolyze, as well as dissolve, any residual DNA. | | | Poor Reproducibility Across Replicate | Inhibitor Present | Perform a dilution series of the PCR template to determine whether
the effect of the inhibitory agent can be reduced. Take extra care with the nucleic acid extraction steps to minimize
carryover of PCR inhibitors. | | | Samples | Primer Design | Verify primers design at different annealing temperatures. | | | Low or High
Reaction
Efficiency | Primer- Dimer | Reduce primer concentration. Evaluate primer sequences for complementarity and secondary structure. Redesign primers if necessary. Perform melt-curve analysis to determine if primer- dimers are present. | | | | Insufficient | 3. Use a thermal gradient to identify the optimal thermal cycling | | | | Optimization | conditions for a specific primer set. | |